COSMOGRAPHIA-SPICE USER’S GUIDE

Prepared by JPL Summer Intern Students

Michelle Park

and

Farhan Alam

July 22,2014

Revised by
C. Acton

and

B. Semenov

Version 8.0
August 14, 2015

Table of Contents

L. INTRODUCGTIONc.iieiiiieiiiiiiiiieeiirieiireeirestresirsessreessteessrsessraessrasssrassssnssssnsstenssssnssrssssrsnssrasssrasssrnes 3
Il. SPICE CATALOG FILE SPECIFICATIONS.......coeuiiieiiiiiiiiiiiineirseireeirnsssnessassseassrsessnsessrsnssrssssrnssssnes 5
1. CATALOG FILE SETTING UP USE OF SPICE DATAcoocnmmnmmsmsmssssmsnsssssssssssssssssssssssssssssssssssssess .6
2. CATALOG FILE DEFINING A SPACECRAFT ..o sssssssssssssssssssssssess .8
3. CATALOG FILE DEFINING A SENSOR.....cococnmmmmnmmmmmmmsssmsssssssssmsssssssssssssssssssssssss s s ssssssssssess 14
4. CATALOG FILE FOR DEFINING AN OBSERVATIONccounmnmmmmmsmmmsmssmssssmsssssssssssssssssssssssssssssssssssass 20
5. CATALOG FILE DEFINING A NATURAL BODYcccunmsmmmnmsmmssmsssess 25
6. CATALOG FILE TO LOAD MULTIPLE FILESconsiimnesssnssssssmsssssssssssss s ssssssssssssssssess .29
7. ARCS FUNCTIONALITY wocutunrcuseesssessssssssssssssssassssssssssanssssssssassnes 30
8. IMPORTANT THINGS TO REMEMBER ... sssssss s 31
9. COMMON PROBLEMS AND POSSIBLE SOLUTIONS.ccoeumnmmmnssmsssmssens 33
I1l. COMPLETE EXAMPLES OF CATALOG FILES.......cc.reuiiiiiiiiiiiiiiiiiinie s e e snessaesseassssasssnss e 35
Example 1: Files for Cassini Orbiter ... 35
EXQMPIE 2: USING ATCS wevururursrsmsmsmsssmssssssssssssssssssssssssssssssssasssssssssssssss st asssssssssssessssssstsssssssssssssssssssssssssssassasssssass 41
Example 3: Natural Body Catalog File ... 43

I. INTRODUCTION

Cosmographia is a visualization program rendering the solar system and its bodies in 3D to create a
freely navigable map of the solar system. The program allows manipulation of time and observer
position. It can use SPICE data to visualize trajectory, orientation, and sensors flown on and
observations taken by interplanetary spacecraft, to support scientific or engineering analysis, and
perhaps even public outreach.

This User's Guide illustrates how to produce catalog files in the JavaScript Object Notation (JSON)
format necessary to use SPICE data in Cosmographia. It is intended to be used in conjunction with a
set of catalog template files.

The following links provide more information about Cosmographia, SPICE, and JSON:

* SPICE-enhanced Cosmographia download packages may be found at the NAIF website
http://naif.jpl.nasa.gov/naif/cosmographia.html

* User’s Guide for SPICE-enhanced Cosmographia may be found at
http://cosmoguide.org

* Information on SPICE data may be found at the NAIF website
http://naif.jpl.nasa.gov/naif/aboutspice.html

* Basicinformation on JSON may be found at
http://www.json.org

A CAUTIONARY NOTE

The Cosmographia tool and the means for using SPICE data in Cosmographia are both works in
progress. Using these offerings will require some patience and experimentation. The user will likely
find a number of non-intuitive aspects of operation, and some documentation that is incomplete or
otherwise inadequate.

The NAIF Group solicits your feedback on all aspects, including suggestions on how Cosmographia
with SPICE might become more useful. Whether or not any fixes or improvements can and will be
made is not yet clear.

0 0 0 Cosmographia 2

Default Cosmographia Start-up Screen

Il. SPICE Catalog file Specifications

Cosmographia uses catalog files to define solar system objects and their properties. Catalog files for
many solar system natural bodies come pre-packaged with the Cosmographia application and use
ephemeris, orientation, and shape models provided with or built into the program. Cosmographia
users can create and load into the program additional catalog files defining new objects or
redefining existing objects. These new catalog files can define

e sets of SPICE data to be used,

* spacecraft, with spacecraft trajectory and orientation provided by SPICE,

* sensors flown on the spacecraft ,with sensor field-of-view (FOV) geometry provided by

SPICE,
e sensor observation times,
* new natural bodies with body trajectory and orientation provided by SPICE.

In the catalog descriptions that follow we use the Cassini mission as an example. Each description
discusses just a portion of the complete catalog file. In an appendix at the end we provide the
complete version of each Cassini catalog file. In the JSON syntax, names are shown in blue and
values are shown in red (character strings) and green (numbers).

Because the descriptions in this User's Guide are broken into chunks, the appearance of JSON
syntactical delimiters may seem strange (unbalanced). Look at the example files at the end, or the
complete catalog templates, to get a clean, complete view of JSON contents and syntactical
structure.

Horizontal rules are used to delimit catalog file “chunks” from descriptions. The descriptions
explaining a particular “chunk” normally follow that “chunk”.

In the examples shown in this User's Guide and the associated template files, not all available
Cosmographia directives are illustrated. Refer to the on-line Cosmographia documentation to see
the full suite of available directives. But also be aware that Cosmographia developers at and outside
JPL might be adding still other Cosmographia directives as the use of Cosmographia grows.

1. CATALOG FILE SETTING UP USE OF SPICE DATA

A “SPICE data” catalog file specifies all the SPICE kernels that need to be loaded to run visualization
for a particular mission. Start constructing this file using the provided “SPICE data” catalog template
(spice_TEMPLATE.json). Note that you can load SPICE meta-kernels, as shown in this example, or
individual SPICE kernels.

"version": "1.0",

"name": "Cosmographia CASSINI Example",

"spiceKernels": [
"kernels/cas_1997_v15.tm",
"kernels/cas_1998 v15.tm",
"kernels/cas_1999 v15.tm",
"kernels/cas_2000_v17.tm",
"kernels/cas_2001_v18.tm",
"kKernels/cas_2002_v17.tm",
"kernels/cas_2003_v17.tm",
"kKernels/cas_2004_v17.tm",
"kernels/cas_2005_v18.tm",
"kernels/cas_2006_v17.tm",
"kernels/cas_2007_v15.tm",
"kernels/cas_2008_v13.tm",
"kernels/cas_2009 v10.tm",
"kernels/cas_2010_v09.tm",
"kernels/cas_2011_v08.tm",
"kernels/cas_2012_v05.tm",
"kernels/cas_2013_v02.tm"

version
The current version of Cosmographia, 1.0 as of July 15, 2014.
Example: “version”: “1.0”

name

The internal name of the catalog file. Any desired descriptive string can be assigned to this
parameter, but using the name of the mission in that string is recommended to maintain
concurrency throughout all files for the same mission.

Example: “name”: “Cosmographia CASSINI Example”

spiceKernels
Names of the SPICE kernels and/or meta-kernels to be used in this visualization. The total number
of SPICE kernels is limited only by SPICE capabilities. Loading a large number of SPICE kernels

(hundreds or thousands) lengthens loading time but normally does not affect visualization speed.
Note the following:

Use and maintenance of this catalog file tends to be easier with the use of SPICE meta-
kernels rather than individual SPICE files.

Multiple kernel/meta-kernel names in the list must be separated by commas (this follows
the JSON convention for an array).

The kernel/meta-kernel paths can be absolute or relative to the directory in which the
“SPICE data” catalog file resides.

Individual kernels and meta-kernels provided in the list must be loadable from the directory
in which this catalog file resides. For meta-kernels this means that kernels included in them
must use correct relative and/or absolute paths.

When using SPICE data from the PDS' NAIF Node archive, multiple meta-kernel versions for
the mission, or for each year of the mission, may exist. In this case, use only the latest version
for the mission or a given year.

Single File Example: “spiceKernels”: “cas_1997 v15.tm”

Multi File Example: “spiceKernels”: [“cas_1997 v15.tm”, “cas_1998 v15.tm”]

Relative Path Example: “spiceKernels”: [“kernels/cas_1997 v15.tm”, “kernels/cas_1998 v15.tm”]
Absolute Path Example: “spiceKernels”: [“/CASSINI/kernels/mk/cas_1997 v15.tm”,
“/CASSINI/kernels/mk/cas_1998 v15.tm”]

2. CATALOG FILE DEFINING A SPACECRAFT

A “spacecraft” catalog file defines the spacecraft trajectory, orientation, appearance, and trajectory
plot parameters for a spacecraft. Start constructing this file using the provided “spacecraft” catalog
template (spacecraft. TEMPLATE.json).

{
"version": "1.0",
"name'": "Cosmographia CASSINI Example",
"items": [
{
"class": "spacecraft",
"name'": "Cassini",
"startTime": "1997-10-15 09:26:08.390 UTC",
"endTime": "2015-08-01 01:58:52.000 UTC",
version

The current version of Cosmographia, 1.0 as of July 15, 2014.
Example: “version”: “1.0”

name

The internal name of the catalog file. Any desired descriptive string can be assigned to this
parameter, but using the name of the mission in that string is recommended to maintain
concurrency throughout all files for the same mission.

Example: “name”: “Cosmographia CASSINI Example”

items: class
Set to “spacecraft” in spacecraft catalog files.

”,

Example: “class”: “spacecraft”

items: name
The name that will be used to identify the spacecraft within Cosmographia (i.e. this is the
Cosmographia name of the spacecraft).

n, o

Example: “name”: “Cassini”

items: startTime

items: endTime

The spacecraft “lifetime” span within Cosmographia. These times are optional. For on-going
missions either endTime or both startTime and endTime can be omitted. If these items are present,
they can be set to the start and stop times of the period for which spacecraft trajectory and
orientation data are available in SPICE kernels listed in the catalog file defining SPICE data. These
start and stop boundaries can be determined for example using the SPICE Toolkit's “brief” and

“ckbrief” utility programs. When SPICE data are provided via one or more meta-kernels (*.tm files),
run “brief” and “ckbrief” as follows:

% brief -a -t -utc *.tm

% ckbrief -a -t -utc -n *.tm
and pick from the summary output the earliest and latest UTC times for which both the spacecraft
trajectory and orientation are available.

Example: "startTime": "1997-10-15 09:26:08.390 UTC",
"endTime": "2015-08-01 01:58:52.000 UTC"

"center": "Saturn",
"trajectory": {
Iltypell: IISpicell’
"target": "Cassini",
"center": "Saturn"

}

items: center

The Cosmographia name for the center of the spacecraft’s trajectory plot. This parameter will often
be set to “Sun” or the Cosmographia name of the body that the spacecraft orbits. For a spacecraft
that changes its center of motion the Arcs construct can be used to specify different centers over
different spans of time. An example of using Arcs can be seen in the Examples section of this User’s
Guide.

Example: “center”: “Sun”

items: trajectory: type
Set to “Spice” to make Cosmographia use SPICE data to compute the spacecraft trajectory.

»,

Example: “type”: “Spice”

items: trajectory: target

The SPICE name of the spacecraft. This name can be determined by looking at the NAIF_IDS
Required Reading document (naif_ids.req), the NAIF name/ID mapping definitions section of the
project’s Frames Kernel (FK) file (*.tf), or the trajectory data summary produced by the “brief”
utility program.

Example: “target”: “Cassini”

items: trajectory: center

The SPICE name for the center of the spacecraft’s trajectory plot. This must be analogous to the
Cosmographia name for the center defined by the items: center parameter and should be set to
“Sun” or the SPICE name of the body that the spacecraft orbits.

Example: “center”: “Sun”

"bodyFrame": {

Iltypell: IISpicell’

"name": "CASSINI_SC_COORD"
Fs

items: bodyFrame: type
Set to “Spice” to make Cosmographia use SPICE data to compute spacecraft orientation.

»,

Example: “type”: “Spice”

items: bodyFrame: name

The SPICE name of the spacecraft reference frame. This name can be determined by looking at the
project’s Frames Kernel (FK) file or the orientation data summary produced by the “ckbrief” utility
program run with the “-n” option.

Example: “fromFrame”: “CASSINI_SC_COORD”

"geometry": {
Iltypell: IIMeShII,
"meshRotation": [

o,
o,

-0.70710677,
0.70710677

1,

"size": 0.005,

"source": "models/cassini/Cassini_no_Huygens_03.3ds"

}

items: geometry: type

Set to “Mesh” when a spacecraft 3D model is available in one of the formats supported by
Cosmographia (“.3ds” or “.cmod”).

Example: “type”: “Mesh”

items: geometry: meshRotation

10

The quaternion rotating the spacecraft 3D model to correctly align it with the axes of the spacecraft
reference frame specified by the items: bodyFrame: name parameter. This quaternion is specified in
SPICE format (s,v1,v2,v3).

Example: “meshRotation”: [0, 0, -0.70710677, 0.70710677]

items: geometry: size

The size of the displayed model. Cosmographia will scale the 3D model to fit inside a sphere with
this radius, in kilometers. If this item is omitted, the model will not be scaled and will be shown with
the dimensions specified by the 3D model file.

Example: “size”: 0.005

items: geometry: source

The path to the spacecraft 3D model file. This path can be absolute or relative to the directory in
which the spacecraft catalog file resides. “.cmod” and “.3ds” are the 3D model file formats
supported by Cosmographia.

n,

Example: “source”: “models/cassini/Cassini_no_Huygens_03.3ds”

"label": {
"color": [
0.6,
1,
1
1,
"fadeSize": 1000000,
"showText": true

}
"trajectoryPlot": {
"color": [
0.6,
1,
1

1,
"lineWidth": 1,
"duration": "14 d",
II'LeadII: II3 dll,
"fade": 1,
"sampleCount": 100

items: label: color

11

The color of the spacecraft name label shown in Cosmographia. The color is based on the RGB color
scheme with each component defined on the 0-1 scale. Note that Hex color codes can be used
instead of RGB integers, for example "#ff0000" for red.

Example: "color": [0.6,1,1]

items: label: fadeSize

The distance (in km) of the object relative to the observer at which the label text will fade from
opaque to transparent. If omitted, Cosmographia will try to set the fadeSize to the size of the
object's trajectory relative to its central body over an orbit. Since many objects do not have well
defined orbits, the program’s guess may not be what you expect.

Example: "fadeSize": 1000000

items: label: showText

The logical flag that determines whether the label text should be displayed in Cosmographia. If
omitted, this value defaults to true.
Example: "showText": true

items: trajectoryPlot: color

The color of the spacecraft trajectory line shown in Cosmographia. The color is based on the RGB
color scheme with each component defined on the 0-1 scale. Note that Hex color codes can be used
instead of RGB integers, for example "#ff0000" for red.

Example: "color": [0.6,1,1]

items: trajectoryPlot: lineWidth

The line width of the trajectory plot in pixels. If omitted this value is set to 1.0.
Example: "lineWidth": 1

items: trajectoryPlot: duration

The time duration for which the spacecraft trajectory line will be visible. To get a meaningful
trajectory line this parameter should be set to approximately one orbital period, which may be
more than a year for a spacecraft in Sun-centric cruise or just a few hours for a spacecraft orbiting a
planet. Durations can be specified in a variety of units - years (“y” or “a”), days (“d”), hours (“h”),
minutes (“m”), seconds (“s”), and even milliseconds (“ms”) - designated by a single or a double
character token following a number.

Example: “duration”: “14 d”

items: trajectoryPlot: lead

The amount of time in advance of the current time in Cosmographia that the trajectory of the object
should be plotted Durations can be specified in a variety of units - years (“y” or “a”), days (“d”),
hours (“h”), minutes (“m”), seconds (“s”), and even milliseconds (“ms”) - designated by a single or a
double character token following a number.

Example: “lead”: “3 d”

items: trajectoryPlot: fade

12

The degree of the fading effect on the trajectory plot visualization, based on a 0-1 scale, with 0 being
completely opaque to 1 fading the most while still being visible.
Example: “fade”: 1

This is an example of items: trajectoryPlot: fade set at 0.0 (left) and 1.0 (right)

items: trajectoryPlot: sampleCount

This is an advanced feature of the trajectory plot that allows the user to define the number of points
to interpolate between when drawing the trajectory. The interpolation points, known as samples,
are evenly spaced across the plot duration. If omitted, Cosmographia chooses 100 samples.
Cosmographia restricts the range of sampleCount to be between 100 and 200000.

Example: “sampleCount”: 100

13

3. CATALOG FILE DEFINING A SENSOR

A “sensor” catalog file defines an instrument’s location, orientation, and appearance. It is
recommended to create a separate sensor catalog file for each sensor with a single field-of-view
(FOV), and for each individual FOV for a sensor with multiple FOVs. The example used here is for
the Cassini ISS Narrow Angle Camera, which has a single FOV.

A non-intuitive aspect of a sensor definition is that the target body the sensor will be pointing at is a
part of the definition. Additional sensor catalog files - one for each sensor-target combination -
must be created if you wish Cosmographia to be able to display a given sensor’s observations of
additional targets.

Start constructing this file using the provided “sensor” catalog template (sensor_ TEMPLATE.json).

{
"version": "1.0",
"name": "Cosmographia CASSINI Example",
"items": [
{
"class": "sensor",
"nmame'": "CAS_ISS_NAC",
"parent": "Cassini",
version

The current version of Cosmographia, 1.0 as of July 15, 2014.
Example: “version”: “1.0”

name

The internal name of the catalog file. Any desired descriptive string can be assigned to this
parameter, but using the name of the mission in that string is recommended to maintain
concurrency throughout all files for the same mission.

Example: "name": "Cosmographia CASSINI Example"

items: class
Set to “sensor” in sensor catalog files.

mon

Example: "class": "sensor”

items: name

The name that will be used to identify the sensor within Cosmographia (or the Cosmographia name
of the sensor).

Example: "name": "CAS_ISS_NAC"

14

items: parent

The Cosmographia name of the spacecraft to which the sensor is attached. This name must be
identical to the name defined by the items: name parameter of the corresponding spacecraft catalog
file.

Example: "parent” : "Cassini"”

"startTime": "1997-10-15 09:26:08.390 UTC",
"endTime": "2015-08-01 01:58:52.000 UTC",
"center": "Cassini",
"trajectoryFrame": {

"type": "BodyFixed",

"body": "Cassini"

}

items: startTime
items: endTime
The sensor “lifetime” span within Cosmographia. These times are optional. For on-going missions
either endTime or both startTime and endTime can be omitted. If these items are present, the time
span is normally set to be the same as the spacecraft “lifetime” span defined in the corresponding
spacecraft catalog file. Note though that this parameter does not necessarily mean that the sensor's
FOV frustum will be shown during this whole “lifetime” period. If the items: geometry:
onlyVisibleDuringObs parameter described below is set to true, the FOV frustum will only be shown
during observation time intervals defined for this sensor-target combination in an observation
catalog file.
Example: "startTime": "1997-10-15 09:26:08.390 UTC",

"endTime": "2015-08-01 01:58:52.000 UTC"

items: center
The Cosmographia name of the spacecraft to which the sensor is attached. This should be identical
to items: parent.

»n, o«

Example: “center”: “Cassini”

items: trajectoryFrame: type

The type of reference frame the sensor’s trajectory is defined in. For a sensor attached to a
spacecraft this parameter should be set to “BodyFixed”.

Example: "type": "BodyFixed"

items: trajectoryFrame: body

The Cosmographia name of the spacecraft to which the sensor is attached. This should be identical
to items: parent.

Example: "body": "Cassini"

15

"geometry": {
Iltypell: IISpicell’
"instrName'": "CASSINI_ISS_NACY,
"target": "Saturn",
"range': 45000,
"rangeTracking": true,
"frustumColor": [
0,
1,
1
]

rustumOpacity": 0.3,

items: geometry: type
Set this to “Spice” to make Cosmographia use SPICE data to define the sensor FOV shape and size.
Example: "type": "Spice”

items: geometry: instrName

The SPICE name of the sensor. This name can be determined by examining the sensor’s IK file
and/or the NAIF name/ID mapping definitions section of the project’s FK file and finding the name
that corresponds to the NAIF ID code that is used in the IK keywords defining the sensor FOV.
Example: "instrName": "CASSINI_ISS_NAC"

items: geometry: target

The Cosmographia name of the body that the sensor will be targeting. Each sensor-target pair is
treated by Cosmographia as one object. For this reason it is recommended to create a separate
catalog file for each sensor-target pair. For instance, two separate but nearly identical sensor
catalog files would be needed for ISS-Saturn and ISS-Titan sensor-target pairs, with the first file
setting target to “Saturn” and the second setting it to “Titan”.

Example: "target”: "Saturn”

items: geometry: range

The length of the sensor’s FOV frustum shown by Cosmographia, in kilometers. This item is ignored
if the rangeTracking option is on.

Example: "range”: 45000

items: geometry: rangeTracking
The logical flag turning on (true) or off (false) target range tracking.
* Turning on the rangeTracking option directs Cosmographia to dynamically set the frustum
length equal to the distance between the spacecraft and the target body.

16

* Ifthis flagis true, the items: geometry: range parameter is not necessary and if present, is
ignored by the program.

¢ Setting this parameter to true is recommended for visual appeal.

* Setting this parameter to false and instead defining the frustum length by the items:
geometry: range parameter is recommended for cases when displaying a frustum with a
fixed length is desired.

Example: “rangeTracking”: true

items: geometry: frustumColor

The color of the sensor’s FOV frustum shown in Cosmographia. The color is based on the RGB color
scheme with each component defined on the 0-1 scale. Note that Hex color codes can be used
instead of RGB integers, for example "#ff0000" for red.

Example: "frustumColor": [0,1,1]

items: geometry: frustumOpacity

The visibility of the sensor’s FOV frustum on the 0 to 1 scale, with 0 being completely transparent to
1 being completely opaque.

Example: "frustumOpacity": 0.3

"gridOpacity": 1,
"footprintOpacity": 0.8,
""'sideDivisions'": 3000,
"onlyVisibleDuringObs": false

items: geometry: gridOpacity

The visibility of the sensor’s FOV frustum grids on the 0 to 1 scale, with 0 being transparent to 1
being completely opaque.

Example: "gridOpacity": 1,

17

Cassini

sensor grids

Example: Cassini’s ISS NAC sensor with gridOpacity set to 1

items: geometry: footprintOpacity

The visibility of the sensor’s FOV footprint on a 0 to 1 scale, with 0 being transparent to 1 being
completely opaque. The sensor’s FOV footprint is the outline on the far end of the sensor’s frustum.
Example: "footprintOpacity": 0.8,

items: geometry: sideDivisions
The number of points plotted per each side of the sensor’s FOV frustum.
* Alarger number of points will result in a smoother sensor FOV side rendering but will be
more likely to cause slow Cosmographia rendering.
* Ingeneral, 125 is a good default number for optimal visuals and running.
e Ifthe sideDivisions parameter is not defined in the catalog file, Cosmographia will use 125
by default.
* Reducing the number of side divisions can help speed up Cosmographia in the case of
lagging.
Example: "sideDivisions": 3000

18

LEnceladus™~_

jagged FOV

Saturn

smooth FOV

This is a visualization of Cassini’s ISS NAC using 3000 side divisions

items: geometry: onlyVisibleDuringObs

The logical flag restricting the sensor’s FOV frustum rendering to only times when the sensor is
taking observations. If true, the sensor’s FOV frustum, grids, and footprints will only be visible
during the times the sensor is taking observations as specified by an observations catalog file. If
false, the sensor’s FOV frustum, grids, and footprints will be visible for the whole sensor “lifetime’
span specified in the items: startTime and items: endTime specified earlier in the sensor file.
Example: "onlyVisibleDuringObs": false

)

19

4. CATALOG FILE FOR DEFINING AN OBSERVATION

An “observations” catalog file defines the observation times and footprint appearance for a series of
observations of a target taken by a sensor. For observations defined by an observation catalog file
to be recognized and rendered by Cosmographia a spacecraft catalog file and a sensor catalog file
defining the sensor-target pair of interest must be created and loaded into Cosmographia before
loading the observation catalog file.

Start constructing this file using the provided “observation” catalog template
(obs_TEMPLATE_groups.json).

{
"version": "1.0",
"name": "Cosmographia CASSINI Example",
"items": [
{
"class": "observation",
"name": "CASSINI_ISS _NAC_OBSERVATION",
"startTime": "1997-10-15 09:26:08.390 UTC",
"endTime": "2015-08-01 01:58:52.000 UTC",
version

The current version of Cosmographia, 1.0 as of July 15, 2014.
Example: "version": "1.0"

name

The internal name of the catalog file. Any desired descriptive string can be assigned to this
parameter, but using the name of the mission in that string is recommended to maintain
concurrency throughout all files for the same mission.

Example: "name": "Cosmographia CASSINI Example"

items: class
Set to “observation” in observation catalog files.

mon

Example: "class": "observation”

items: name

The name that will be used to identify this observation within Cosmographia (or the Cosmographia
name of the observation).

Example: "name": "CASSINI ISS NAC OBSERVATION”

20

items: startTime
items: endTime
The observation's “lifetime” span within Cosmographia. These times are optional. For on-going
missions either endTime or both startTime and endTime can be omitted. If these items are present,
this time span is normally set to be the same as the sensor “lifetime” span defined in the
corresponding sensor catalog file but it can also be made shorter if desired. Note, though, that this
time span does not determine the actual times for which the observation footprints or swaths are
computed. Instead the actual times are specified in the items: geometry: groups: startTime and
endTime parameters described below and the observation “lifetime” span defined here must be
equal to or be wider than the time span of these actual observations.
Example: "startTime": "1997-10-15 09:26:08.390 UTC",

"endTime": "2015-08-01 01:58:52.000 UTC"

"center": "Saturn",
"trajectoryFrame": {
"type": "BodyFixed",
"body": "Saturn"
I
"bodyFrame": {
"type": "BodyFixed",
"body": "Saturn"
I

items: center

The Cosmographia name of the target body. This should be identical to the items: geometry: target
value specified in the corresponding sensor catalog file.

Example: "center": "Saturn”

items: trajectoryFrame: type

The type of reference frame the observation footprint is defined in. For observation footprints to
appear fixed on the target body surface this parameter should be set to “BodyFixed”.

Example: "type": "BodyFixed”

items: trajectoryFrame: body

The Cosmographia name of the target body. This should be identical to the items: geometry: target
value specified in the corresponding sensor catalog file.

Example: "body": "Saturn”

items: bodyFrame: type
The type of reference frame the observation footprint is defined in. For observation footprints to
appear fixed on the target body surface this parameter should be set to “BodyFixed”.

21

Example: "type": "BodyFixed"

items: bodyFrame: body

The Cosmographia name of the target body. This should be identical to the items: geometry: target
value specified in the corresponding sensor catalog file.

Example: "body": "Saturn”

"geometry": {

"type": "Observations",
""sensor'": "CAS_ISS_NAC",
"groups": [

"startTime": '"2004-05-24 05:48:03.043 UTC",
"endTime": "2004-05-24 05:48:08.643 UTC",

"obsRate": 0

F

{
"startTime": '"2004-05-24 05:53:03.069 UTC",
"endTime": "2004-05-24 05:53:05.669 UTC",
"obsRate": 0

}

1,

items: geometry: type
Set this to “Observations” to render observation swaths or footprints.
Example: "type": "Observations”

items: geometry: sensor

The Cosmographia name of the sensor taking the observations defined in this file.

This value should be the same as the items: name value in the corresponding sensor file.
Example: "sensor": "CAS_ISS_NAC"

items: geometry: groups: startTime
items: geometry: groups: endTime
items: geometry: groups: obsRate
The start and stop time and the observation rate for each actual observation in the series. The
observation rate determines the rate, in seconds, at which footprints will be drawn between the
start and stop times. Setting the observation rate to zero will create a continuous swath rather than
a series of footprints. Multiple actual observation time/rate triplets with distinct start/stop
boundaries and same or different rates can be specified within a group block.
Example: "startTime" :"2004-05-24 05:48:03.043 UTC",

"endTime" :"2004-05-24 05:48:08.643 UTC"

“obsRate”: 0

22

This is an Example of observation footprints (left) and swaths (right)

"footprintColor": [

1,

0.5,

0
1,
"footprintOpacity": 0.4,
"showResWithColor": false,
"alongTrackDivisions": 500,
""'sideDivisions": 125,
""'shadowVolumeScaleFactor": 1.75,
"fillInObservations": false

items: geometry: footprintColor

The color of the footprints shown in Cosmographia. The color is based on the RGB color scheme
with each component defined on the 0-1 scale. Note that Hex color codes can be used instead of RGB
integers, for example "#ff0000" for red.

Example: "footprintColor": [1.0, 0.5, 0.0]

items: geometry: footprintOpacity

The visibility of the footprints on a 0 to 1 scale, with 0 being transparent to 1 being completely
opaque.

Example: "footprintOpacity”: 0.4

23

items: geometry: showResWithColor

The logical flag enabling the footprints to dynamically change color depending on the distance
between the target body and the spacecraft. Customization of distance-color correspondence can be
done using the items: geometry: colorScheme parameter not described in this User’s Guide.
Example: "showResWithColor": false

items: geometry: alongTrackDivisions

The number of segments that the side of a swath will be divided into during visualization.
Decreasing this number from its default of 1000 can improve rendering speed.

Example: "alongTrackDivisions": 500

items: geometry: sideDivisions

The number of points plotted per each side of a footprint. A larger number of points will result in a
smoother sensor FOV side rendering but will be more likely to cause slow Cosmographia rendering.
In general, 125 is a good default number for optimal visuals and running. If the sideDivisions
parameter is not defined in the catalog file, Cosmographia will use 125 by default. Reducing the
number of side divisions can help speed up Cosmographia in the case of lagging..

Example: "sideDivisions": 125

items: geometry: shadowVolumeScaleFactor

The factor scaling the length of the shadow volume used in rendering filled-in observations. Using a
larger factor is helpful in ensuring proper footprint rendering on oblong bodies.

Example: "shadowVolumeScaleFactor”: 1.75

items: geometry: filllnObservations

The logical flag enabling filling of the footprints with color. If true, observations will appear filled in
with color. If false, observations will be outlined.

Example: "filllnObservations”: false

24

5. CATALOG FILE DEFINING A NATURAL BODY

A “natural body” catalog file defines the natural body trajectory, orientation, appearance, and
trajectory plot parameters for a natural body of interest. Natural body catalog files can be created to
define new bodies. It is possible but usually not necessary to redefine existing bodies because
majority of Solar system bodied in the SPICE-enhanced version of Cosmographia already use SPICE
trajectory and orientation data. The catalog file presented in this section defines parameters for
Saturn just to illustrate how its is done.

Start constructing this file using the provided “body” catalog template
(body_TEMPLATE_globe.json).

{
"version": "1.0",
"name": "Cosmographia CASSINI Example",
"items": [
{
"class": "planet",
"name'": "Saturn",
version

The current version of Cosmographia, 1.0 as of July 15, 2014.
Example: “version”: “1.0”

name

The internal name of the catalog file. Any desired descriptive string can be assigned to this
parameter, but using the name of the mission in that string is recommended to maintain
concurrency throughout all files for the same mission.

Example: “name”: “Cosmographia CASSINI Example”

items: class

»n « »n o«

Set this to one of the following applicable class values: “planet,” “satellite”, “asteroid”, “dwarf

»n o« »n o«

planet”, “reference point”, “other.”

mom

Example: "class": "planet”

items: name

The name that will be used to identify this natural body within Cosmographia (or the Cosmographia
name of the body). When re-defining an existing body, this name must exactly match the name

already used by Cosmographia for the body.
Example: "name : "Saturn”

25

"mass'": "95.152 Mearth",
"density": 0.687,

items: mass

The mass of the body in kg (use “kg” as units), or in relation to the mass of the Earth (use “Mearth”
as suffix).

Example: “mass”: “95.152 Mearth”

items: density
The density of the object in g/cm”3.
Example: “density”: 0.687

"center": "Sun",

"trajectory" : {
Iltypell: IISpicell’
"target": "SATURN",
"center": "SUN"

}

items: center
The Cosmographia name for the center of the body’s trajectory plot. This parameter will usually be
set to “Sun” or to the Cosmographia name of the planet or planet barycenter that the body orbits.

»,

Example: “center”: “Sun”

items: trajectory: type
Set this to “Spice” to make Cosmographia use SPICE data to compute body’s trajectory.

»,

Example: “type”: “Spice”

items: trajectory: target

The SPICE name of the natural body. This name can be determined by looking at the NAIF_IDS
Required Reading document (naif_ids.req), the NAIF name/ID mapping definitions section of the
project’s Frames Kernel (FK) file (*.tf), or the trajectory data summary produced by the “brief”
utility program.

Example: “target”: Saturn”

items: trajectory: center

The SPICE name for the center of the body’s trajectory plot. This must be analogous to the
Cosmographia name for the center defined by the items: center parameter and should be set to
“Sun” or the SPICE name of the planet or planet barycenter that the body orbits.

Example: “center”: “Sun”

26

"bodyFrame": {
"type": "Spice",
"name": "“IAU_SATURN"
Fs

items: bodyFrame: type
Set this to “Spice” to make Cosmographia use SPICE data to compute the body’s orientation.

Example: “type”: “Spice”

items: bodyFrame: name

The SPICE name of the body’s body-fixed reference frame. This name can be determined by looking
at the Frames Required Reading document or the project’s FK file.

Example: “fromFrame”: “IAU_SATURN”

There are multiple ways to define the “geometry” of a natural body. The three most likely to be of
use are “Globe”, “Mesh” and “Rings”. Choose one to use as your geometry block.

* Globe: uses a tri-axial ellipsoid to model the body

* Mesh: uses an imported 3D shape to model the body and is typically used for small,
irregularly shaped bodies

* Rings: uses an inner and outer radius to model a ring or ring set

Here we have an example using "Globe."

"geometry": {
"type": “Globe",
"radii": [
60268,
60268,
54364
1,
"baseMap": "textures/saturn.jpg"

}

items: geometry: type

The object shape type. Using “Globe” as the type is recommended for spherical or ellipsoidal
astronomical objects.

Example: “type”: “Globe”

items: geometry: radii

27

The radii of the tri-axial ellipsoid used as the body’s shape. The radii are measured in kilometers
from the body’s center of geometry along x, y, and z axes of the body reference frame. The radii can
be found in a Planetary Constants kernel (PCK).

Example: "radii": [60268, 60268, 54364]

items: geometry: baseMap
The path to the jpg texture file used to overlay the base globe. This path can be absolute or relative
to the directory in which the natural body catalog file resides.

mon

Example: "baseMap": "textures/Saturn.jpg"

"label": {
"color": [
0.8,
1.0,
0.5
]
I
"trajectoryPlot": {
"duration": "10759.22 d",
"fade": 0.3

items: label: color

The color of the body name label displayed in Cosmographia. The color is based on the RGB color
scheme with each component defined on a 0-1 scale. Note that Hex color codes can be used instead
of RGB integers, for example "#ff0000" for red.

Example: "color": [0.8,1,0.5]

items: trajectoryPlot: duration

The time duration, in years, for which the spacecraft trajectory line will be visible. To get a
meaningful trajectory line this parameter should be set to approximately one orbital period.
Durations can be specified in a variety of units - years (“y” or “a”), days (“d”), hours (“h”), minutes
(“m”), seconds (“s”), and even milliseconds (“ms”) - designated by a single or a double character
token following a number.

Example: “duration”: “10759.22 d”

items: trajectoryPlot: fade
The degree of the fading effect on the trajectory plot visualization, based on a 0-1 scale, with 0 being
completely opaque to 1 fading the most while still being visible.
Example: “fade” : 0.3
28

6. CATALOG FILE TO LOAD MULTIPLE FILES

Frequently it is convenient to load multiple catalog files for a given mission together. This can be
done creating a “Load” catalog file.

Start constructing this file using the provided “load” catalog template (load_TEMPLATE.json).

"version": "1.0",

"name": "Cosmographia CASSINI Example",

"require": [
"spice_CASSINI. json",
"spacecraft_CASSINI.json",
"sensors/sensor_CASSINI_ISS_NAC-SATURN. json",
"observations/obs_CASSINI_ISS_NAC-SATURN-0405240548.json"

version
The current version of Cosmographia, 1.0 as of July 15, 2014.
Example: "version": "1.0"

name

The internal name of the catalog file. Any desired descriptive string can be assigned to this
parameter, but using the name of the mission in that string is recommended to maintain
concurrency throughout all files for the same mission.

Example: "name": "Cosmographia CASSINI Example"

require

The list of all catalog files that will be loaded together when this catalog is loaded. Individual catalog
files must be listed in this catalog file in proper order. Look at “Loading Order of Files into
Cosmographia” in Section 7 of this User’s Guide for more information. The paths to catalog files can
be absolute or relative to the directory in which the “load” catalog file resides.

Example: "spice_CASSINIjson",
"spacecraft_CASSINLjson",
"sensors/sensor_CASSINI_ISS_NAC-SATURN.json",
"observations/obs_CASSINI_ISS_NAC-SATURN-0405240548.json"

29

7. ARCS FUNCTIONALITY
"Arcs" functionality can be used to make Cosmographia show meaningful trajectory plots when the
center of motion for a spacecraft trajectory changes from one body to another, such as from sun-

centered (during cruise phase) to planet centered (upon planet close flyby or orbit insertion).

An example of using Arcs is found near the end of this User's Guide and in a separate spacecraft
Arcs catalog template (spacecraft TEMPLATE_arcs.json).

30

8. IMPORTANT THINGS TO REMEMBER

Loading Order of Files into Cosmographia

The loading of separate catalog files must be done in order of information dependency. For
instance, the SPICE data catalog file for a mission must be loaded prior to any spacecraft, sensor, or
observation files since each of the latter require Cosmographia to read SPICE data.

In general, files should be loaded in the following order:
1. SPICE data catalog file (names the SPICE kernels to be used)
2. Spacecraft catalog file(s)
3. Natural body catalog files(s) (if defining new natural bodies to be visualized by
Cosmographia)
4. Sensor catalog file(s)
5. Observation catalog file(s)

An optional "load" catalog file may be used to load all needed catalog files. If used, the ordering of
lines in the "load" catalog file must follow the loading order rules mentioned above. An example of a
“load” catalog file is provided earlier in this User's Guide.

Using Multiple Files of a Given Type

In theory all of the specifications needed to run Cosmographia with SPICE could be provided in a
single catalog file, but this would be difficult to construct and to maintain. Using the functional
separation shown above - SPICE data, Spacecraft, natural body, Sensor and Observation catalog
files - is a better way to organize your inputs. Further, supplying separate files for each sensor-
target pair and each observation set is recommended.

Case-Sensitivity
Parameters are case sensitive such as in defining “items: class” and incorrect case usage may cause
files to not be loaded properly.

File Placement

Individual SPICE files or meta-kernels must be in the same folder as the corresponding SPICE data
catalog file, otherwise a path to the file should be given as an absolute path or a relative to the SPICE
data catalog file.

The Parameters in Each of the Following Groups Must be Identical
This is because these parameters are used to link the objects defined by catalog files to one another.

) “) “

For instance, the spacecraft’s “name” must be identical to a sensor’s “parent” for Cosmographia to
associate the two objects together.

Group 1
* ‘“items” : “name” (in Spacecraft catalog)

» “

* ‘“items”: “parent” (in Sensor catalog)

» “

* ‘“items”: “center” (in Sensor catalog)

31

* ‘“items” : “trajectoryFrame” : “body” (in Sensor catalog)

* ‘“items”: “bodyFrame” : “body” (in Sensor catalog)
Group 2

* ‘“items”: “name” (Sensor catalog)

* ‘“items”: “geometry” : “sensor” (in Observation catalog)
Group 3

* “items”: “geometry” : “target” (in Sensor catalog)

* “items”: “center” (in Observation catalog)

* ‘“items”: “trajectoryFrame” : “body” (in Observation catalog)

* ‘“items” : “bodyFrame” : “body” (in Observation catalog)

)

The Parameters in Each of the Following Groups Must be Different Versions of Each Other
This is because these parameters are used to match SPICE bodies to analogous bodies within
Cosmographia.

All Parameters are in both Spacecraft and Natural Body Catalog Files

Group 1
* ‘“items”: “center” (Cosmographia name)

* ‘“items”: “trajectory” : “center” (SPICE name)

32

9. COMMON PROBLEMS AND POSSIBLE SOLUTIONS

If Observations are not showing...

The name assigned for the sensor’s target is not correct or the range of the sensor may be too short
to reach the sensor’s target. To fix the latter, set the rangeTracking parameter to ‘true’ in the sensor
file. Observations may also not be appearing if footprintOpacity is set to 0.

If Cosmographia is rendering too slowly...
It may help if you:
* decrease the number of sideDivisions for sensor and/or observation objects
* decrease the number of observation time intervals (groups)
* decrease the number of alongTrackDivisions for swath observations (when obsRate=0)
* decrease obsRate
* set footprintOpacity or gridOpacity to zero in the sensor object

If Cosmographia is crashing after loading a file...

Check to make sure that sideDivisions in the sensor file is not set to 0 or 1.
If all files seem to be in good shape, try restarting Cosmographia.

NOTE: Cosmographia will not crash due to any syntax error in catalog files.

If a “Cannot be Found” error message constantly shows up when loading a file...
This is probably because of a mismatch between any of the following:

* items: name in the spacecraft file and items: parent in a sensor file

* jtems: name in a sensor file and geometry: sensor in an observation file

If sensors are too thin for observations to be seen...

This may happen for sensors such as laser altimeters. In this case, setting the obsRate to 0 and
assigning a well contrasting color to the footprint color may help provide a clearer visualization of
observations.

If sensors are constantly pointing towards empty space...
This may actually be what was happening during the specified time, or this may be caused by lack of
SPICE orientation data for the sensor frame.

No Spice Data...

There may be certain time intervals during Cosmographia simulation in which insufficient SPICE
data is available to render visuals properly. In this case, a “No Spice Data” warning with the full or
abbreviated list of SPICE names of bodies and/or frames will appear across the top of the
Cosmographia window and the object associated with this gap may jump to the Sun (as default) or
have some other strange orientation or trajectory.

The reason for this gap can be examining SPICE error messages available in “Spice Log” under “File”
in Cosmographia.
33

Common reasons include:
* missing CK file for articulating instruments
* gaps in CK files for spacecraft
* wrong bodyFrame name
* wrong instrName

Common Syntax Errors ...
Cosmographia will display an error message such as the following if syntax error is disabling proper
file loading.

e 0O o0 Error loading catalog file

Error and warning log:

Error in /Users/mhpark/Desktop/Trials/Cassini/spice_cassini.json, line 23: syntax
error, unexpected]

Common syntax errors are:
* misplacement of commas, particularly at the end of a list
* extra brackets, parentheses, or curly brackets
* lack of quotation mark(s)

Catalog Load Warning ...

Cosmographia will display descriptive warning messages during catalog loading when catalogs re-
define already existing bodies and use inconsistent SPICE frames in two-step body orientation
definitions, and in a few other cases. These warnings don’t prevent catalogs from being loaded and
Cosmographia from running.

34

lIl. COMPLETE EXAMPLES OF CATALOG FILES

Example 1: Files for Cassini Orbiter

Example 1A: Cassini SPICE Data Catalog File
{
"version': "1.0",
"name": "Cosmographia CASSINI Example",
"spiceKernels": [
"kernels/cas_1997_v15.tm",
"kernels/cas_1998 v15.tm",
"kernels/cas_1999 v15.tm",
"kernels/cas_2000_v17.tm",
"kernels/cas_2001_v18.tm",
"kKernels/cas_2002_v17.tm",
"kernels/cas_2003_v17.tm",
"kKernels/cas_2004_v17.tm",
"kernels/cas_2005_v18.tm",
"kernels/cas_2006_v17.tm",
"kernels/cas_2007_v15.tm",
"kernels/cas_2008_v13.tm",
"kernels/cas_2009 v10.tm",
"kernels/cas_2010_v09.tm",
"kernels/cas_2011_v08.tm",
"kernels/cas_2012_v05.tm",
"kernels/cas_2013_v02.tm"

Example 1B: Cassini Spacecraft Catalog File

{

"version': "1.0",
"name": "Cosmographia CASSINI Example",
"items": [

{

"class": "spacecraft",
"name'": "Cassini",
"startTime": "1997-10-15 09:26:08.390 UTC",
"endTime": "2015-08-01 01:58:52.000 UTC",
"center": "Saturn",
"trajectory": {
Il.typell: IISpicell,
"target": "Cassini",
"center": "Saturn"
"
"bodyFrame": {
Il.typell: IISpicell,
"name": "CASSINI_SC_COORD"
+
"geometry": {
Il.typell: IIMeShII,
"meshRotation": [
o,
o,
-0.70710677,
0.70710677
1,
"size": 0.005,

"source": "models/cassini/Cassini_no_Huygens_03.

F
"label": {
"color": [
0.6,
1,
1
1,
"fadeSize": 1000000,
"showText": true

I
"trajectoryPlot": {
"color": [
0.6,
1,
1

1,
"lineWidth": 1,
"duration": "14 d",
II'LeadII: II3 dll,
"fade": 1,

3ds"

36

by

by

"sampleCount": 100

37

Example 1C: Cassini Sensor Catalog File
{
"version": "1.0",
"name": "Cosmographia CASSINI Example",
"items": [
{
"class": "sensor",
"name": "CAS_ISS_NAC",
"parent": "Cassini",
"startTime": "1997-10-15 09:26:08.390 UTC",
"endTime": "2015-08-01 01:58:52.000 UTC",
"center": "Cassini",
"trajectoryFrame": {
"type": "BodyFixed",
"body": "Cassini"
I
"geometry": {
"type" : "Spice" ,
"instrName'": "CASSINI_ISS_NACY,
"target": "Saturn",
"range': 45000,
"rangeTracking": true,
"frustumColor": [
0,
1,
1
1,
"frustumOpacity": 0.3,
"gridOpacity": 1,
"footprintOpacity": 0.8,
""'sideDivisions'": 3000,
"onlyVisibleDuringObs": false

38

Example 1D: Cassini Observation Catalog File

{
"version": "1.0",
"name": "Cosmographia CASSINI Example",
"items": [
{
"class": "observation",
"name'": "CASSINI_ISS_NAC_OBSERVATION",
"startTime": "1997-10-15 09:26:08.390 UTC",
"endTime": "2015-08-01 01:58:52.000 UTC",
"center": "Saturn",
"trajectoryFrame": {
"type": "BodyFixed",
"body": "Saturn"
}
"bodyFrame": {
"type": "BodyFixed",
"body": "Saturn"
+
"geometry": {
"type": "Observations",
""sensor'": "CAS_ISS_NAC",
"groups": [
"startTime": "2004-05-24 05:48:03.043 UTC",
"endTime": "2004-05-24 05:48:08.643 UTC",
"obsRate": 0
Fs
{
"startTime": "2004-05-24 05:53:03.069 UTC",
"endTime": "2004-05-24 05:53:05.669 UTC",
"obsRate": 0
¥
1,
"footprintColor": [
1,
0.5,
0
1,
"footprintOpacity": 0.4,
"showResWithColor": false,
""'sideDivisions": 125,
"alongTrackDivisions": 500,
""'shadowVolumeScaleFactor": 1.75,
"fillInObservations": false
b
b
]
b

39

Example 1E: Cassini Load All Catalog File
{
"version": "1.0",
"name": "Cosmographia CASSINI Example",
"require": [
"spice_CASSINI. json",
"spacecraft_CASSINI.json",
"sensors/sensor_CASSINI_ISS_NAC-SATURN. json",
"observations/obs_CASSINI_ISS_ NAC-SATURN-0405240548

.json"

40

Example 2: Using Arcs
Example 2: Cassini Spacecraft Catalog File with arcs

{

"version": "1.0",

"name": "Cosmographia CASSINI Example",

"items": [

{
"class": "spacecraft",
"name'": "Cassini",
"startTime": "1997-10-15 09:26:08.390 UTC",
"arcs": [
{

"endTime": "2004-07-01 02:48:00.000 UTC",
"center": "Sun",
"trajectory": {

Iltypell: IISpicell'

"target": "Cassini",

"center": "Sun"

F,
"bodyFrame": {
Iltypell: IISpicell,

"name'": "CASSINI_SC_COORD"

}
b
{
"center": "Saturn",
"trajectory": {
"type" : "Spice" ,
"target": "Cassini",
"center": "Saturn"
I
"bodyFrame": {
"type" : "Spice" ,
"name'": "CASSINI_SC_COORD"
}
}

1,
"geometry": {
Il.typell: IIMeShII,
"meshRotation": [
0,
0,
-0.70710677,
0.70710677
1,
""'size": 0.005,

"source": "models/cassini/Cassini_no_Huygens_03.

o
"label": {

3ds"

41

"color": [

rajectoryPlot": {
"color": [
0.6,
1,
1
1,
"duration": "14 d",
"fade": 10

42

Example 3: Natural Body Catalog File
Example 3: Saturn and Rings Natural Body Catalog File

{

"version": "1.0",
"name": "Cosmographia CASSINI Example",
"items": [

{

B e o

"class": "planet",
"name'": "Saturn",
"mass'": "95.152 Mearth",
"density": 0.687,
"center": "Sun",
"trajectory": {
"type": "Spice",
“"target": "SATURN",
"center": "SUN"
I
"bodyFrame": {
"type": "Spice",
""name": "“IAU_SATURN"
Fy
"geometry": {
"type": ||G'Lobe||'
"radii": [
60268,
60268,
54364
1,
"baseMap": "textures/saturn.jpg"
I
"label": {
"color": [
0.8,
1.0,
0.5
|
Fy
"trajectoryPlot": {
"duration": "10759.22 d",

“"fade": 0.3
}
"name": "Saturn Rings",
"center": "Saturn",

"bodyFrame": <
"type": "BodyFixed",
"body": "Saturn"

}

43

""geometry":

Il.typell: IIRingSII,
""innerRadius": 74660,
"outerRadius": 140220,

"texture": "textures/saturn-rings.

png

44

